Introduction to Logarithms

Logs are the <u>inverse</u> of an exponential

You can convert any exponential to a log or a log to an exponential.

To convert you use the following

You read a log as follows $\log_b a = x$ "log **base** b **of** a **is** x"

There are 3 types of logs

Written	$y = \ln x$	$y = \log x$	$y = \log_b x$
Base	e	10	6

Example 1: Write each exponential form in logarithmic form.

hase = of

		_
Exponential Form	Logarithmic Form	
3 ⁵ = 243	log ₃ 243 = 5]
25 = 5 ²	logs 25=2	169, 25
10 ⁴ = 10,000	log 10,000 = 4 log x = -1] 103504
$6^{-1} = x$	109 × = -1	
$a^b = c$	loga C=b	100525-8

Example 2: Write each logarithmic form in exponential form.

Logarithmic Form	Exponential Form	
log ₉ 9 = 1	9'=9	
log ₂ 512 = 9	29 = 512	
log ₈ 2 = x	8 ^x = 2	
log ₄ x = -2	4 ⁻² = X	
log _b 1 = 0	6 =	

Special Properties of Logarithms					
For any base b such that $b > 0$	and $b \neq 1$,				
LOGARITHMIC FORM	EXPONENTIAL FORM	EXAMPLE			
Logarithm of Base b					
$\log_b b = 1$	$b^1 = b$	$log_{10}10 = 1$ $10^1 = 10$			
Logarithm of 1					
$\log_b 1 = 0$	$b^0 = 1$	$ log_{10}1 = 0 10^0 = 1 $			

$$log_{m}1 = 0$$
 $log_{\alpha}a = 1$
 $log_{537}1 = 0$ $log_{3}3 = 1$

How to evaluate a log

1. set equal to x

- 2. Convert to an exponential
 - 3. Solve the exponential

Evaluate each expression below.

1.
$$\log_{3} 243 = 5$$
2. $\log_{8} 2 = \frac{1}{3}$
3. $\log_{27} 81 = \frac{4}{3}$
4. $\log_{4} \frac{1}{32} = \frac{-5}{2}$
 $|\log_{3} 243 = \times$
 $|\log_{27} 8| = \times$
 $|\log_{27} 8| = \times$
 $|\log_{47} 8| = \times$
 $|\log_{47}$